On the automorphism groups of the Z2 Z4 -linear 1-perfect and Preparata-like codes

نویسنده

  • Denis S. Krotov
چکیده

We consider the symmetry group of a Z2Z4-linear code with parameters of a 1-perfect, extended 1-perfect, or Preparata-like code. We show that, provided the code length is greater than 16, this group consists only of symmetries that preserve the Z2Z4 structure. We find the orders of the symmetry groups of the Z2Z4-linear (extended) 1-perfect codes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the kernel and rank of Z 4 - linear Preparata - like and Kerdock - like codes ∗

We say that a binary code of length n is additive if it is isomorphic to a subgroup of Z2 ×Zβ4 , where the quaternary coordinates are transformed to binary by means of the usual Gray map and hence α + 2β = n. In this paper we prove that any additive extended Preparata-like code always verifies α = 0, i.e. it is always a Z4-linear code. Moreover, we compute the rank and the dimension of the kern...

متن کامل

The Z4-linearity of Kerdock, Preparata, Goethals, and related codes

Certain notorious nonlinear binary codes contain more codewords than any known linear code. These include the codes constructed by Nordstrom-Robinson , Kerdock, Preparata, Goethals, and Delsarte-Goethals . It is shown here that all these codes can be very simply constructed as binary images under the Gray map of linear codes over Z4, the integers mod 4 (although this requires a slight modificat...

متن کامل

New Ring-Linear Codes from Geometric Dualization

In the 1960s and 1970s the Nordstrom-Robinson-Code [30] and subsequently the infinite series of the Preparata[31], Kerdock[21], Delsarte-Goethals[6] and Goethals-Codes [7] were discovered. Apart from a few corner cases, all of these codes are non-linear binary block codes that have higher minimum distance than any known comparable (having equal size and length) linear binary code. We will call ...

متن کامل

Product perfect Z2 Z4-linear codes in steganography

Product perfect codes have been proven to enhance the performance of the F5 steganographic method, whereas perfect Z2Z4-linear codes have been recently introduced as an efficient way to embed data, conforming to the ±1-steganography. In this paper, we present two steganographic methods. On the one hand, a generalization of product perfect codes is made. On the other hand, this generalization is...

متن کامل

Translates of Linear Codes Over

We give a method to compute the complete weight distribution of translates of linear codes over Z4. The method follows known ideas that have already been used successfully by others for Hamming weight distributions. For the particular case of quaternary Preparata codes, we obtain that the number of distinct complete weights for the dual Preparata codes and the number of distinct complete coset ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Des. Codes Cryptography

دوره 83  شماره 

صفحات  -

تاریخ انتشار 2017